Orthopedic extendable rods
Embodiments herein are generally directed to extendable rods for use in orthopedic assemblies. In some embodiments, these implants may be used in conjunction with procedures to treat spinal deformities, including, but not limited to, early onset scoliosis.
Latest Globus Medical, Inc. Patents:
The present invention relates to orthopedic extendable rods and methods used to install and/or actuate these devices.
BACKGROUND OF THE INVENTIONMany types of spinal irregularities can cause pain, limit range of motion, or injure the nervous system within the spinal column. These irregularities can result from, without limitation, trauma, tumor, disc degeneration, and disease. One general example of a spinal irregularity is an abnormal curvature of the spine, for example, as exhibited with scoliosis, kyphosis, and/or lordosis. Scoliosis, a side-to-side curvature of the spine, can affect the dimensions of an individual's chest area, thereby impacting performance of internal organs such as the lungs and heart.
Treatment of scoliosis can include, for example, reducing the severity and preventing further progression of the irregularity through physical therapy, bracing, and/or surgery. Surgical procedures to treat scoliosis can include spinal fusion, wherein the vertebrae are straightened and one or more rods are placed along the spinal column to maintain the alignment.
SUMMARY OF THE INVENTIONSome embodiments herein are directed to an extendable rod assembly that can include an elongate sleeve comprising a cannula extending therethrough; an actuating rod comprising an enlarged head disposed within the cannula and a body extending in a first direction, wherein the enlarged head divides the cannula into a first chamber and a second chamber; a fixed rod comprising an enlarged head disposed within the cannula and a body extending in a second direction; and a valve assembly configured to control flow of a fluid between the first and second chambers.
Other embodiments herein are directed to an extendable rod assembly that can include an elongate sleeve comprising a cannula extending therethrough; a valve assembly comprising a valve body disposed within the cannula and comprising an enlarged head, wherein the enlarged head divides the cannula into a first chamber and a second chamber; a first actuating rod comprising a first enlarged head disposed within the first chamber and a body extending in a first direction, wherein the first enlarged head divides the first chamber into a first sub-chamber and a second sub-chamber; and a second actuating rod comprising a second enlarged head disposed within the second chamber and a body extending in a second direction, wherein the second enlarged head divides the second chamber into a third sub-chamber and a fourth sub-chamber; wherein the valve assembly is configured to control flow of a fluid between the first and second sub-chambers, and between the third and fourth sub-chambers.
Some embodiments herein are directed to an extendable rod assembly that can include an elongate sleeve comprising a cannula extending longitudinally therethrough and a port, wherein the port is configured to transfer a fluid in and out of the cannula; an actuating rod comprising a locking member, wherein at least a portion of the actuating rod is disposed within the cannula at a first end of the elongate sleeve; and a fixed rod comprising a head, wherein the head is disposed within cannula at a second end of the elongate sleeve.
Other embodiments herein are directed to a method of extending an extendable rod assembly, which can include providing an extendable rod assembly, wherein the extendable rod assembly has a first length; coupling the port with a fluid source; and introducing the fluid into the cannula; wherein the fluid causes the actuating rod to translate at least partially out of the cannula, thereby extending the extendable rod assembly to a second length that is greater than the first length.
Some embodiments herein are directed to an extendable rod assembly that can include an elongate sleeve comprising a conduit extending therethrough from a first end to a second end; an actuating rod comprising a plurality of gear teeth and at least partially disposed within the first end of the conduit; a fixed rod at least partially disposed within the second end of the conduit; and a gear assembly configured to actuate the actuating rod.
Other embodiments herein are directed to an extendable rod assembly that can include an elongate sleeve comprising a conduit extending therethrough and a housing member disposed thereon, wherein the housing member is in fluid communication with the conduit; a gear assembly mounted in the housing member, an actuating rod at least partially disposed within the conduit and extending in a first direction; and a fixed rod at least partially disposed within the conduit and extending in a second direction; wherein a member of the gear assembly is configured to directly engage the actuating rod.
Still other embodiments herein are directed to an elongate sleeve comprising a conduit extending therethrough, and further comprising a housing member in fluid communication with the conduit; a gear assembly disposed within the housing member; an actuating rod at least partially disposed within the conduit and extending in a first direction, the actuating rod comprising a plurality of teeth configured to mesh with a member of the gear assembly; and a fixed rod at least partially disposed within the conduit and extending in a second direction.
Yet other embodiments herein are directed to a method of extending an extendable rod assembly, which can include providing a extendable rod assembly having a first length, coupling a driver with a drive member of the extendable rod assembly, and applying torque to the drive member in a first direction to thereby extend the extendable rod assembly to a second length that is greater than the first length.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating certain embodiments, are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
Early onset scoliosis (EOS) refers to the occurrence of a lateral spinal deviation in adolescents or children, for example, between four and nine years old. In these instances, a spinal fusion may not be appropriate because it can impede the growth process. Rather, an expandable rod, sometimes referred to as a “growing rod,” may be implanted. These rods can be implanted along the curved segment of the spine and may be lengthened in situ, thereby growing along with the spinal column of the individual. Often, growing rods may be lengthened on a standard schedule, such as every three to six months, through a surgical procedure. These repeated surgical procedures can be invasive and accordingly can carry risks relating to wound healing and anesthesia, among other things. Additionally, the need for repeated surgical procedures can be time-consuming and costly. Accordingly, disclosed herein are new and improved spinal rods that can be extended in a minimally-invasive or non-invasive procedure.
Components of all of the devices disclosed herein can be made of materials known to those skilled in the art, including metals (e.g., titanium), metal alloys, polymers (e.g., poly ether ether ketone (PEEK), polyphenylene sulfone (PPSU), polysulfone (PSU), polycarbonate (PC), polyetherimide (PEI), polypropylene (PP), polyacetals, or mixtures or co-polymers thereof), allograft, and/or combinations thereof. In some embodiments, all components and/or all extendable rod assemblies described herein may be non-ferromagnetic (e.g., may not exhibit magnetic properties and/or may not be able to permanently produce a magnetic field). In these embodiments, individuals in whom the resulting assemblies are installed may advantageously be able to undergo medical imaging techniques such as MRI. The components can also be machined and/or manufactured using techniques known to those skilled in the art. For example, polymeric components may be injection-molded or blow-molded.
Turning now to
As used herein, the terms “proximal” and “distal” are utilized generally with reference to the middle of the elongate sleeve of each extendable rod assembly. For example, the actuating rod 4 may have a proximal end and a distal end, wherein the proximal end is closer to the middle of the elongate sleeve than the distal end. For consistency, specific components may also follow this directional convention, regardless of their particular disposition with respect to the elongate sleeve 2. For example, a particular component of the actuating rod 4 that is disposed within the elongate sleeve 2 may be described with the same proximal-distal orientation as the actuating rod 4 as a whole, regardless of exactly where that particular component is disposed within the elongate sleeve 2.
As illustrated in
As illustrated in
Turning to
Those skilled in the art may appreciate that the actuating rod 4 may be configured to slide and/or translate longitudinally within the elongate sleeve 2. For example, the enlarged head 26 can travel between the first end cap 12 and the stem 50 of the fixed rod 6. Accordingly, the extendable rod assembly 100 can be configured to transition between a first configuration, wherein the assembly 100 is retracted, collapsed, shortened, un-expanded, and/or un-extended, and a second configuration, wherein the assembly 100 is lengthened, expanded, and/or extended. In the first configuration, the proximal surface 60 of the enlarged head 26 can contact a proximal surface 72 of the stem 50. In this configuration, the first chamber 32 may be relatively large and the second chamber 34 may be relatively small, as compared to the second configuration. In the second configuration, the distal surface of the enlarged head 26 can contact the ledge 17 of the first end cap 12. In this configuration, the first chamber 32 may be relatively small and the second chamber 34 may be relatively small, as compared to the first configuration. Those skilled in the art may appreciate that the assembly 100 may also be capable of numerous intermediate configurations, wherein the overall length of the assembly 100 is greater than the fully retracted length and less than the fully extended length.
As illustrated in
The extendable rod assembly 100 may also include a valve assembly. The valve assembly can be configured to control, regulate, and/or permit flow of a fluid between the first and second chambers 32, 34. In some embodiments, the extendable rod assembly 100 may include a needle valve assembly. Advantageously, the valve assembly may include an automatic valve that regulates flow in response to changes in fluid pressure. In some embodiments, the valve assembly can include a hydraulic or pneumatic actuation mechanism. Various fluids may be used in these valve assemblies, and may be selected on the basis of various factors, including, but not limited to compressibility, viscosity, and thermal conductivity, as well as consideration of the expected load or weight exerted on the assembly 100. Non-limiting examples of suitable fluids include air and saline.
Turning to
The cavity 56 can be located at a proximal end of the body 30 of the actuating rod 4. The cavity 56 can extend along a transverse axis of the actuating rod 4. The cavity 56 can extend from a first opening 62 to a second opening 64, wherein both openings are on the body 30 of the actuating rod 4. The cavity 56 can be in fluid communication with the first chamber 32. The cavity 56 can have a shape that is configured to conform to the shape of the valve body 54. As illustrated in
The valve body 54 can be disposed within the cavity 56. The valve body 54 can include a stem 66 and a base 68. The stem 66 can include a tapered tip. As illustrated in FIG. 1E, the stem 66 can include a frustoconical tip. The stem 66 may be configured to be received within the tapered portion of the cavity 56. As illustrated in
As illustrated in
Embodiments herein are also directed to methods of installing the extendable rod assembly 100. In use, the first and second chambers 32, 34 may be filled with a fluid. As described herein, the particular fluid may be selected on the basis of the anticipated load that the extendable rod assembly 100 will bear, among other factors. The extendable rod assembly 100 may be installed in a retracted, collapsed, shortened, or un-extended configuration, using techniques known to those skilled in the art. In this configuration, the proximal surface 60 of the enlarged head 26 of the actuating rod 4 may rest against or be adjacent to the proximal surface 72 of the stem 50.
In some embodiments, the extendable rod assembly 100 may be used in conjunction with one or more other devices, including but not limited to a bone screw, intervertebral cage, artificial disc, stabilizing plate, or other prosthetics, to treat a spinal irregularity. In embodiments where the extendable rod assembly 100 is used to treat scoliosis or EOS, it may be configured to be coupled to a posterior section of a spine. In some embodiments, two assemblies 100 may be installed, with one on each side of a spinal column. The extendable rod assembly 100 may be coupled, fastened, or secured to a posterior section of a bone (e.g., a vertebra or a rib) through one or more fasteners (e.g., screws and/or hooks). In these embodiments, the fastener(s) may be installed prior to the extendable rod assembly 100. For example, pedicle screws may be installed in pedicles of a first (e.g., superior) vertebra above the curvature and a second (e.g., inferior) vertebra below the curvature. Any pedicle screws known in the art and configured to receive a rod may be used, including but not limited to monoaxial and polyaxial pedicle screws. After the fasteners are installed, the extendable rod assembly 100 may be installed by coupling the actuating rod 4 and the stationary rod 6 with the fasteners. In some embodiments, the actuating rod 4 and/or the stationary rod 6 may be secured or anchored, e.g., unable to pivot, rotate, and/or translate, relative to the fasteners and the respective vertebrae. In some embodiments, the actuating rod 4 may be coupled with the superior vertebra and the stationary rod 6 may be coupled with the inferior vertebra. However, the extendable rod assembly 100 can advantageously be installed with either rod extending in the superior direction, and vice versa. Thus, in other embodiments, the actuating rod 4 may be coupled with an inferior vertebra and the stationary rod 6 may be coupled with a superior vertebra.
As described herein, growing rods may be used to treat early onset scoliosis in children who may still be growing. Thus, after installation, the rod may need to be extended or lengthened in order to accommodate the child's growth. Advantageously, the extendable rod assembly 100 may be configured to extend and/or lengthen automatically, in vivo, without surgical or clinical intervention. In use, as the spine grows, the first and second vertebrae may be pulled apart, resulting in the actuating rod 4 and the fixed rod 6 being pulled apart. The fixed rod 6 may already be seated in the second end cap 14, and may therefore be unable to translate within the elongate sleeve 2 in the direction of the applied force. In contrast, the actuating rod 4 may be pulled in the distal (e.g., outward) direction, resulting in increased pressure in the first chamber 32 and reduced pressure in the second chamber 34. The valve assembly 7 may be used to equalize the pressure in the first and second chambers 32, 34. As the pressure increases in the first chamber 32, a force may be exerted on the valve body 54, which may cause the base 68 to compress, as illustrated in
Turning now to
As illustrated in
The distal portion 218 of the second segment 212 can include a neck 220 and a rounded protrusion 222 extending from the neck 220. The socket 216 can be configured to receive the rounded protrusion 222 therein. In some embodiments, the socket 216 can include a rounded inner surface. The curvature of the rounded inner surface can match (e.g., equal) the curvature of the rounded protrusion 222. A proximal portion of the first segment 210 (e.g., a proximal portion of the first and second arms 224, 226) may further include a ringed protrusion or rim 230. The rim 230 can define a passageway having a width that is less than a diameter of the rounded protrusion 222. The rounded protrusion 222 may thus be secured, trapped, or contained within the socket 216. However, the rounded protrusion 222 may also be configured to pivot or rotate within the socket 216.
The elongate sleeve 202 may take the shape of a curved tube and may extend longitudinally along a curved line. As illustrated in
In use, the extendable rod assembly 200 may be installed, e.g., along a spine, as described herein with respect to extendable rod assembly 100. The actuating rod 204 may be pulled distally (e.g., outward) to extend or lengthen the assembly 200. As the actuating rod 204 travels along a curved path (e.g., as dictated by the curvature of the elongate cannula 202), the first and second segments 210, 212 may pivot with respect to one another, transferring force along the actuating rod 204 and/or enabling the actuating rod 204 to slide or translate smoothly. Advantageously, the jointed actuating rod 204 may enable or facilitate the use of curved assemblies, which may more closely match the contour or curvature of an individual's spine.
Turning now to
In some embodiments, the second end 310 of the elongate sleeve 302 may include a constricted section 380, as illustrated in
As illustrated in
As illustrated in
The body 330 of the rotatable stopper can include at least one longitudinal groove 346, as illustrated in
When assembled, the hollow tube 316 may be threaded onto the first end 308 of the elongate sleeve 302. The hollow tube 316 may not completely overlap the first end 308 of the elongate sleeve 302; instead, these two elements may be longitudinally staggered. The first open end 320 of the hollow tube 316 may extend distally as compared to a first end face 354 of the elongate sleeve 302, as illustrated in
In use, when the elongate grooves 346, 348 on the rotatable stopper 318 and the elongate sleeve 302 are not in alignment, the cannula 358 may not be in fluid communication with the gap 356. However, when the rotatable stopper 318 is rotated, the elongate grooves 346, 348 may be aligned, thereby allowing fluid communication between the cannula 358 and the gap 356 and effectively lengthening the cannula 358. As described herein with respect to the valve assembly 7 of extendable rod assembly 100, a fluid may be added to the cannula (e.g., first and/or second chambers 32, 34) at a particular pressure based on, among other things, the anticipated load that will be borne by the extendable rod assembly 100 in situ. The first end cap 312 described in the present embodiment advantageously permits the pressure in the assembly to be adjusted by twisting or rotating the rotatable stopper 318. Accordingly, the pressure may be easily varied, either before, during, or after installation.
Turning to
The valve body 362 may regulate fluid flow between the first and second chambers 368, 370. As illustrated in
In use, the extendable rod assembly 300 may be installed, e.g., posteriorly along a spine, in a retracted, collapsed, or un-extended configuration as described herein with respect to the extendable rod assembly 100, for example. As the spine grows or lengthens, the distance between the first and second vertebrae to which the extendable rod assembly 300 is coupled or secured may increase, resulting in the actuating rod 304 and the fixed rod 306 being pulled apart. The fixed rod 306 may be seated in the second end cap 314, as illustrated in
Some embodiments can include two actuating rods and a valve assembly having two extension members. Turning now to
As illustrated in
The first and/or second extension members 428, 430 may have some or all of the same features described herein with respect to the first extension member 363 of the extendable rod assembly 300. For example, the first extension member 428 can include a first longitudinal cannula extending at least partially therethrough. The first extension member 428 can also include a plurality of transverse conduits 432 in fluid communication with the first longitudinal cannula. In some embodiments, the first extension member 428 may include a number of transverse conduits 432 in the range of from about ten to about fifty. In other embodiments, the first extension member 428 may include a number of transverse conduits 432 in the range of from about twenty to about thirty. The transverse conduits 432 may be spaced apart longitudinally in regular intervals. Each transverse conduit 432 may extend from an opening on an outer surface of the first extension member 428 to the first longitudinal cannula. The transverse conduit 432 can take on a plurality of different shapes. For example, it may be a pin hole (e.g., circular opening) or a slot (e.g., rectangular opening). In some embodiments, each transverse conduit 432 can include a semicircular slot (e.g., semicircular as viewed along a transverse plane of the first extension member 428). In other embodiments, each transverse conduit 432 can extend along at least 25% of an outer circumference of the first extension member 428. In some embodiments, the first extension member 428 can include a plurality of transverse channels or grooves 434, as illustrated in
The first actuating rod 404 may include some or all of the same features as the first actuating rod 304 in the extendable rod assembly 300. In some embodiments, the first actuating rod 404 may be identical to the first actuating rod 304. The first actuating rod 404 may include, for example, an enlarged head 440 and a body 442 extending from the enlarged head 440. The enlarged head 440 can be configured to be disposed, situated, or received within a portion of the cannula 411 of the elongate sleeve 402 (e.g., within the first chamber 424). The outer diameter of the enlarged head 440 can be the same as or slightly smaller than the inner diameter of the elongate sleeve 402. For example, the enlarged head 440 and the elongate sleeve 402 may be engaged in an interference, friction, or slip fit. Additionally, the enlarged head 440 can have an outer diameter that is larger than an outer diameter of the body 442, as illustrated in
A proximal portion of the first actuating rod 404 may also include a duct (not shown, but analogous to duct 364 of extendable rod assembly 300) and a cavity 452. The duct may be in fluid communication with the first sub-chamber 444 and the cavity 452, and the cavity 452 may be in fluid communication with the second sub-chamber 446. In some embodiments, the duct can extend from an outer surface (e.g., a side wall) of the first actuating rod 404 to the cavity 452. The cavity 452 can extend at least partially along a longitudinal axis of the first actuating rod 404, and may be configured to receive at least a portion of the first extension member 428 therein. As illustrated in
The second actuating rod 406 may include some or all of the same features as the first actuating rod 404. In some embodiments, the second actuating rod 406 may be identical to the first actuating rod 404. The second actuating rod 406 may include, for example, an enlarged head 454 and a body 456 extending from the enlarged head 454. The enlarged head 454 can be configured to be disposed, situated, or received within a portion of the cannula 411 of the elongate sleeve 402 (e.g., within the second chamber 426). The outer diameter of the enlarged head 454 can be the same as or slightly smaller than the inner diameter of the elongate sleeve 402. For example, the enlarged head 454 and the elongate sleeve 402 may be engaged in an interference, friction, or slip fit. Additionally, the enlarged head 454 can have an outer diameter that is larger than an outer diameter of the body 456, as illustrated in
A proximal portion of the second actuating rod 406 may also include a duct 466 and a cavity 468. The duct 466 may be in fluid communication with the third sub-chamber 458 and the cavity 468, and the cavity 468 may be in fluid communication with the fourth sub-chamber 460. In some embodiments, the duct 466 can extend from an outer surface (e.g., a side wall) of the second actuating rod 406 to the cavity 468. The cavity 468 can extend at least partially along a longitudinal axis of the second actuating rod 406, and may be configured to receive at least a portion of the second extension member 430 therein. As illustrated in
The valve assembly 407 can include the valve body 420, duct and cavity 452 on the first actuating rod 404, and duct 466 and cavity 468 on the second actuating rod 406. The valve body 420 may regulate fluid flow between the first and second sub-chambers 444, 446, and between the third and fourth sub-chambers 458, 460. In use, the extendable rod assembly 400 may be installed, e.g., posteriorly along a spine, in a retracted, collapse, or un-extended configuration as described herein with respect to the extendable rod assembly 100 and/or 300, for example. As the spine grows or lengthens, the distance between the first and second vertebrae to which the extendable rod assembly 400 is coupled or secured may increase, resulting in the first actuating rod 404 and the second actuating rod 406 being pulled apart. In contrast to the extendable rod assemblies 100 and/or 300, both actuating rods 404, 406 may be configured to translate within or along the elongate sleeve 402 in the direction of the applied force. For example, where the first actuating rod 404 is coupled with a superior vertebra and the second actuating rod 406 is coupled with an inferior vertebra, the first actuating rod 404 may extend, translate, or slide in the superior direction and the second actuating rod 406 may extend, translate, or slide in the inferior direction.
As described herein with respect to the extendable rod assembly 300, when the first actuating rod 404 is pulled in a first distal or outward (e.g., superior) direction, pressure in the first sub-chamber 444 may increase and pressure in the second sub-chamber 446 may decrease. Similarly, when the second actuating rod 406 is pulled in a second distal or outward (e.g., inferior) direction, pressure in the third sub-chamber 458 may increase and pressure in the fourth sub-chamber 460 may decrease. The valve assembly 407 may be configured to equalize the pressure in the four sub-chambers. As the first actuating rod 404 is pulled in a first distal direction, the pressure in the first sub-chamber 444 may increase until the duct (not shown) enters fluid communication with a transverse conduit 432. At that point, fluid from the first sub-chamber 444 is allowed to flow through the duct, transverse conduit 432, cavity 452, and another transverse conduit 432 to the second sub-chamber 446, thereby equalizing the pressure in the first and second sub-chambers 444, 446. Similarly, as the second actuating rod 406 is pulled in a second distal direction, the pressure in the third sub-chamber 458 may increase until the duct 466 enters fluid communication with a transverse conduit 470. At that point, fluid from the third sub-chamber 458 is allowed to flow to the fourth sub-chamber 460 through the duct 466, cavity 468, and another transverse conduit 470 to the fourth sub-chamber 460, thereby equalizing the pressure in the third and fourth sub-chambers 458, 460. As the spine continues to grow, the pressure differential between the first and second sub-chambers 444, 446 (and/or between the third and fourth sub-chambers 458, 460) may increase until the next transverse conduit on either of the first or second extension members 428, 430 reaches the duct on the respective actuating rod. Advantageously, as the spine grows or lengthens, the extendable rod assembly 400 can continue to extend automatically in this manner. Those skilled in the art may appreciate that an equal and opposite pressure may be applied to the first and second actuating rods 404, 406. Accordingly, both first and second actuating rods 404, 406 may move apart (e.g., outwards) at the same rate. Consequently, the elongate sleeve 402 may remain in the center of the assembly 400 (as measured, for example, along the overall length of the assembly). This embodiment may be particularly advantageous when treating a curvature in the middle of a spine, e.g., in the thoracic spine. Other embodiments that include extension in only one direction may be advantageous when treating a curvature in an upper or lower portion of a spine, e.g., in the lumbar spine.
Turning now to
As illustrated in
As illustrated in
In other embodiments, the assembly 600 may further include a fluid connector 622. The fluid connector 622 may be configured to direct a fluid into and/or out of the cannula 610 through the port 620. As illustrated in
As illustrated in
At least a portion of the actuating rod 604 can be disposed within the cannula 610 at the first end 614 of the elongate sleeve 602. Additionally, a portion of the actuating rod 604 may extend distally beyond (e.g., out of) the first end 614 of the elongate sleeve 602. As illustrated in
As illustrated in
Those skilled in the art may appreciate that the actuating rod 604 may be configured to slide and/or translate longitudinally within the elongate sleeve 602. Accordingly, the extendable rod assembly 600 can be configured to transition from a first configuration, wherein the assembly 600 is retracted, collapsed, shortened, un-expanded, and/or un-extended, as illustrated in
As illustrated in
As illustrated in
Embodiments herein are also directed to methods of extending the extendable rod assembly 600. In use, the extendable rod assembly 600 may be provided in a retracted, collapsed, shortened, and/or un-extended configuration having a first length. In this configuration, the proximal end 632 of the actuating rod 604 may rest against or be adjacent to the stem 650 of the fixed rod 606. In embodiments where the extendable rod assembly 600 is being used to treat EOS, the extendable rod assembly 600 may be installed along a spine in the retracted configuration as described with respect to other extendable rod assemblies disclosed herein. In some embodiments, a tube or hose may be coupled with the fluid connector 622 either before or after installation of the assembly 600. The tube or hose coupled with the fluid connector 622 may advantageously be implanted subcutaneously.
The method of extending the extendable rod assembly 600 may then include coupling the port 620 with a fluid source. In some embodiments, the port 620 may be coupled directly to a fluid source. In other embodiments, the port 620 may be coupled indirectly to a fluid source through the fluid connector 622. For example, this step may include attaching or coupling a tube with the inflow member 626. In yet other embodiments, the port 620 may be coupled indirectly to a fluid source through the fluid connector 622 and the tube or hose coupled to the inflow member 626 of the fluid connector 622. For example, this step may include inserting a nozzle into the tube or hose.
The method may then include the step of introducing the fluid into the cannula 610. This step can include actuating the fluid source. Various fluids may be used to extend the extendable rod assembly 600 and may be selected on the basis of various factors, including, but not limited to compressibility, viscosity, and thermal conductivity, as well as consideration of the expected load or weight exerted on the assembly 600. Non-limiting examples of suitable fluids include air and saline. Additionally, various sources of fluid as known to those skilled in the art may be used. For example, in some embodiments, the fluid source can include a pump and/or injector. In other embodiments, it can include a saline injector. The fluid source may also be actuated using any appropriate methods, including manually and/or electronically.
In use, as the fluid enters the cannula 610, it may exert a pressure on the actuating rod 604, causing the actuating rod 604 to translate distally (e.g., outwards) in the direction indicated by arrow 605 and at least partially out of the cannula 610, thereby extending the extendable rod assembly 600 to a second length that is greater than the first length. Those skilled in the art may appreciate that the locking member 636 may not prevent motion of the actuating rod 604 in the distal direction. As the actuating rod 604 is pushed distally, the spring member 646 may compress and the spherical member 644 may rest in the deep proximal end 640 of the tapered groove 630.
After the assembly 600 has been extended, the fluid may optionally be removed from the cannula 610. This step may include, for example, using gravitational forces to allow the fluid to drain through a tube or hose that is coupled to the port 620, either directly or indirectly via the fluid connector 622. In other embodiments, this step may include applying a vacuum or other source of negative pressure to actively pump the fluid out. As the fluid is removed or drained, the locking member 636 may advantageously prevent the actuating rod 604 from retracting back into the cannula 610. For example, as the actuating rod 604 is pulled proximally, the spherical member 644 may roll towards the shallow distal end 642 of the tapered groove 638. While in the shallow part of the groove 638, the spherical member 644 may engage or contact the inner surface of the elongate sleeve 602 in an interference or friction fit, thereby inhibiting further movement of the actuating rod 604 in the proximal direction. As described herein, in embodiments that include a tube or hose coupled with the fluid connector 622, the tube or hose may be implanted subcutaneously. Thus, subsequent lengthening procedures (e.g., every three to six months) may be advantageously performed in a subcutaneous and/or minimally-invasive procedure. Such a procedure may require less time for surgery and recovery as compared to a more invasive extension procedure, and may also reduce risks to a patient.
Turning now to
As described further with respect to an alternative embodiment, elongate sleeve 803, the elongate sleeve 802 may include at least one guide member disposed within the conduit 808, e.g., at the first end 810. The guide member may include a channel configured to receive the actuating rod 804 therethrough. Advantageously, the guide member may be configured to stabilize the actuating rod 804 as it translates through the elongate sleeve 802, as described further herein. The elongate sleeve 802 may also include a retaining member disposed within the conduit 808, e.g., at the second end 812, and that may be configured to secure the fixed rod 806 within the elongate sleeve 802. The elongate sleeve 802 may also be configured to couple with one or more seal members. For example, in some embodiments, the first end 810 and/or the second end 812 of the elongate sleeve 802 may include an internal circumferential groove configured to receive a seal member therein. In some embodiments, the internal circumferential groove may be disposed on the guide member. The seal member may be, for example, an o-ring, a square ring, or any other seal members as described herein.
In some embodiments, the elongate sleeve 802 may include a cover. As illustrated in
An alternative embodiment of an elongate sleeve 803 is illustrated in
As illustrated in
In some embodiments, the gear assembly 824 can include four gears. In these embodiments, two of the four gears may be joined or affixed together as a compound gear 832. The compound gear 832 may include a first, larger gear 834 sharing an axle with and/or mounted on a second, smaller gear, wherein the larger gear 834 is configured to mesh with the input gear 826 and the smaller gear is configured to mesh with the output gear 828. The input gear 826 and the second, smaller gear may each have a number of teeth that is half of that of the larger gear 834 and the output gear 828. For example, the input gear 826 and the smaller gear may each include sixteen teeth, and the output gear 828 and the larger gear 834 may each include thirty-two teeth. In these embodiments, the gear train may have a gear ratio of 4:1.
In other embodiments, the gear assembly 824 can include three gears. In these embodiments, the gear train may include input gear 826, output gear 828, and an idler gear (not shown). The idler gear may be configured to mesh with both the input gear 826 and the output gear 828. The input gear 826 and the idler gear may each have a number of teeth that is half of that of the output gear 828. For example, the input gear 826 and the idler gear may each have sixteen teeth and the output gear 828 may include thirty-two teeth. In these embodiments, the gear train may have a gear ratio of 2:1.
When turned in a clockwise motion, the input gear 826 may cause the actuating rod 804 to translate distally out of the elongate sleeve 802. The gear assembly 824 may be configured such that one revolution of the drive member 820 or 821 can cause the actuating rod 804 to translate by a distance in the range of from about 4 mm to about 12 mm. In other embodiments, one revolution of the drive member 820 or 821 may cause the actuating rod 804 to translate by a distance in the range of from about 4 mm to about 6 mm. In yet other embodiments, one revolution of the drive member 820 or 821 may cause the actuating rod 804 to translate by a distance in the range of from about 9 mm to about 12 mm. In some embodiments, one revolution of the driver member 820 or 821 may generally approximate the estimated growth of a spine over a particular period, such as three months or six months. Overall, the length of the assembly 800, as measured from a distal-most end 805 of the actuating rod 804 to a distal-most end 807 of the fixed rod 806, may be configured to vary by an amount in the range of from about 5 cm to about 10 cm. For example, the assembly 800 may be configured to lengthen or extend by at least 7 cm. In yet other embodiments, the length of the assembly 800 may be configured to increase by a factor in the range of from about 10% to about 50%. In other embodiments, the length of the assembly 800 may be configured to increase by a factor in the range of from about 20% to about 30%. In yet other embodiments, the length of the assembly 800 may be configured to increase by about 25%.
Any drivers known in the art may be used to drive or rotate the drive member 820 or 821. In some embodiments, the driver may be actuated by a motor that may be coupled to a computer system or other electronics. In these embodiments, the driver may be incorporated into the assembly 800 (e.g., mounted in or on the elongate sleeve 802) or may be reversibly coupled with the assembly 800. In other embodiments, the driver, and consequently, the gear assembly 824, may be configured to be actuated manually, e.g., by hand. In these embodiments, the gear assembly 824 may be configured such that the amount of torque that is required to rotate the drive member and extend the actuating rod 804, while also counteracting any compressive or distractive forces within a spinal column, is within the range of a reasonable manual output, e.g., from about 1 N·m to about 10 N·m. For example, the gear assembly described herein having a gear ratio of 4:1 may be configured to be actuated upon receiving an input of about 2.5 N·m of torque. The gear assembly described herein having a gear ratio of 2:1 may be configured to be actuated upon receiving an input of about 5 N·m of torque. Those skilled in the art may appreciate that other gear sizes, combinations, and/or ratios may be utilized to vary the rate at which the assembly 800 lengthens (e.g., the rate at which the actuating rod 804 translates) and/or the input force required per revolution.
In some embodiments, the gear assembly 824 may further include a locking member, which may be configured to prevent translation of the actuating rod in a proximal (e.g., inward) direction. The locking member may be a spring-loaded pawl. The locking member may be coupled to the input gear 826 or its axle, and may be configured to directly engage the smaller member of the compound gear 832 or the idler gear. The locking member may be coupled to a lever, wherein the lever may be configured to disengage the locking member. The lever may be configured to be actuated by a driver, and in some embodiments, can be accessed through the socket 830. In use, if the assembly 800 needs to be shortened or retracted, a driver can be inserted into the socket 830 to activate (e.g., depress) the lever, thereby releasing the locking member and allowing gear train to rotate in reverse such that the actuating rod translates into the elongate sleeve 802.
As illustrated in
Those skilled in the art may appreciate that the actuating rod 804 may be configured to slide and/or translate longitudinally within the elongate sleeve 802. Accordingly, the extendable rod assembly 800 can be configured to transition from a first configuration, wherein the assembly 800 is retracted, collapsed, shortened, un-expanded, and/or un-extended, as illustrated in
As illustrated in
Embodiments herein are also directed to methods of extending the extendable rod assembly 800. In use, the extendable rod assembly 800 may be provided in a retracted, collapsed, shortened, and/or un-extended configuration having a first length, as illustrated, for example, in
The method of extending the extendable rod assembly 800 may then include coupling a driver with the drive member 820 or 821. As described herein, any driver known in the art and configured to engage and apply torque to the drive member may be used. For example, in some embodiments the driver can include a wrench member, such as an Allen wrench or hex key, or a socket wrench member, such as a hex socket wrench. The method may then include applying torque to the drive member 820 or 821 in a first direction (e.g., clockwise). As illustrated in
In some embodiments, the extendable or growing rods described above can be used with various other spinal implants, including but not limited to fusion devices and prosthetic devices. Fusion devices include cages, spacers (expandable and non-expandable), biological material (e.g., graft material inserted into the cages and spacers), corpectomy devices, plates, rod members and various fixation devices, including pedicle screws and hooks. Prosthetic devices include artificial discs, facet joint replacements, and any other implant that mimics anatomical motion.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims. Although individual embodiments are discussed herein, the invention covers all combinations of all those embodiments.
Claims
1. An extendable rod assembly, comprising:
- an elongate sleeve having a central longitudinal axis comprising a conduit extending therethrough, and further comprising a housing member in fluid communication with the conduit;
- a gear assembly disposed within the housing member, the gear assembly having an input gear that is offset from the central longitudinal axis and an output gear, wherein a diameter of the input gear and a diameter of the output gear each extend along a longitudinal axis of the elongate sleeve;
- an actuating rod capable of linear translation at least partially disposed within the conduit and extending in a first direction, the actuating rod comprising a plurality of teeth configured to mesh with a member of the gear assembly, wherein the gear assembly is in direct contact with the actuating rod; and
- a fixed rod at least partially disposed within the conduit and extending in a second direction, wherein the fixed rod is formed as a monolithic body with the elongate sleeve.
2. The extendable rod assembly of claim 1, wherein the gear assembly comprises a gear train, the gear train comprising the input gear and the output gear.
3. The extendable rod assembly of claim 2, wherein the input gear comprises a socket configured to receive a drive member.
4. The extendable rod assembly of claim 2, wherein one revolution of the input gear is configured to translate the actuating rod by a distance in the range of from 4 mm to 12 mm.
5. The extendable rod assembly of claim 2, wherein one revolution of the input gear is configured to translate the actuating rod by a distance in the range of from 9 mm to 12 mm.
6. The extendable rod assembly of claim 2, wherein the output gear is configured to engage the actuating rod.
7. The extendable rod assembly of claim 2, wherein the gear train further comprises a compound gear configured to couple with the input gear and the output gear.
8. The extendable rod assembly of claim 7, wherein the gear assembly further comprises a locking member configured to prevent translation of the actuating rod in a proximal direction.
9. The extendable rod assembly of claim 8, wherein the locking member comprises a spring-loaded pawl.
10. The extendable rod assembly of claim 9, wherein the locking member is configured to directly engage the compound gear.
11. The extendable rod assembly of claim 8, further comprising a lever configured to disengage the locking member.
12. An extendable rod assembly, comprising:
- an elongate sleeve having a central longitudinal axis comprising a conduit extending therethrough and a housing member disposed thereon, wherein the housing member is in fluid communication with the conduit;
- a gear assembly mounted in the housing member, the gear assembly having an input gear that is offset from the central longitudinal axis and an output gear, wherein a diameter of the input gear and a diameter of the output gear each extend along a longitudinal axis of the elongate sleeve;
- an actuating rod capable of linear translation at least partially disposed within the conduit and extending in a first direction; and
- a fixed rod at least partially disposed within the conduit and extending in a second direction, wherein the fixed rod is formed as a monolithic body with the elongate sleeve;
- wherein a member of the gear assembly is configured to directly engage the actuating rod.
13. The extendable rod assembly of claim 12, wherein at least one of the elongate sleeve and the housing member comprises a cover.
14. The extendable rod assembly of claim 13, further comprising a drive member coupled with the housing member and configured to engage the gear assembly.
15. The extendable rod assembly of claim 14, wherein the cover comprises an aperture, and the drive member is rotatably disposed within the aperture.
16. The extendable rod assembly of claim 15, wherein the drive member comprises a driver interface section and a gear interface section, and wherein the driver interface section is configured to extend out of the housing member.
17. An extendable rod assembly, comprising:
- an elongate sleeve having a central longitudinal axis comprising a conduit extending therethrough from a first end to a second end;
- an actuating rod capable of linear translation comprising a plurality of gear teeth and at least partially disposed within the first end of the conduit;
- a fixed rod at least partially disposed within the second end of the conduit, wherein the fixed rod is formed as a monolithic body with the elongate sleeve; and
- a gear assembly configured to actuate the actuating rod, the gear assembly having an input gear that is offset from the central longitudinal axis and an output gear, wherein a diameter of the input gear and a diameter of the output gear each extend along a longitudinal axis of the elongate sleeve, wherein the gear assembly is in direct contact with the actuating rod.
18. The extendable rod assembly of claim 17, wherein the gear assembly is non-ferromagnetic.
19. The extendable rod assembly of claim 18, wherein the elongate sleeve comprises at least one guide member disposed within the conduit.
20. The extendable rod assembly of claim 19, wherein the guide member comprises a channel configured to receive the actuating rod therethrough.
2333033 | October 1943 | Mraz |
3900025 | August 1975 | Barnes, Jr. |
4931055 | June 5, 1990 | Bumpus |
5505733 | April 9, 1996 | Justin |
5700263 | December 23, 1997 | Schendel |
5704938 | January 6, 1998 | Staehlin |
5704939 | January 6, 1998 | Justin |
6033412 | March 7, 2000 | Losken |
6126660 | October 3, 2000 | Dietz |
6139316 | October 31, 2000 | Sachdeva |
6336929 | January 8, 2002 | Justin |
6491695 | December 10, 2002 | Roggenbuck |
6500177 | December 31, 2002 | Martinelli |
6673079 | January 6, 2004 | Kane |
6730087 | May 4, 2004 | Butsch |
6884243 | April 26, 2005 | Sellers |
6918910 | July 19, 2005 | Smith |
7029472 | April 18, 2006 | Fortin |
7708762 | May 4, 2010 | McCarthy |
7753915 | July 13, 2010 | Eksler |
7942908 | May 17, 2011 | Sacher et al. |
7951152 | May 31, 2011 | Marino |
8057474 | November 15, 2011 | Knuchel |
8162984 | April 24, 2012 | Weirich |
8211149 | July 3, 2012 | Justis |
8236002 | August 7, 2012 | Fortin |
8268009 | September 18, 2012 | Teitelbaum |
8292963 | October 23, 2012 | Miller |
8357181 | January 22, 2013 | Lange |
8377065 | February 19, 2013 | Kuntz |
8439914 | May 14, 2013 | Ross |
8475499 | July 2, 2013 | Cournoyer |
8480680 | July 9, 2013 | Lewis |
8585740 | November 19, 2013 | Ross |
8894663 | November 25, 2014 | Giger |
8906021 | December 9, 2014 | Lehmann |
9011503 | April 21, 2015 | Duggal |
20020040225 | April 4, 2002 | Sellers |
20020156485 | October 24, 2002 | Sellers |
20030167059 | September 4, 2003 | Young |
20040030395 | February 12, 2004 | Blunn |
20050033291 | February 10, 2005 | Ebara |
20050246034 | November 3, 2005 | Soubeiran |
20050261779 | November 24, 2005 | Meyer |
20060047282 | March 2, 2006 | Gordon |
20060079897 | April 13, 2006 | Harrison |
20060195087 | August 31, 2006 | Sacher |
20060195088 | August 31, 2006 | Sacher |
20070239159 | October 11, 2007 | Altarac |
20070270803 | November 22, 2007 | Giger |
20080312656 | December 18, 2008 | Vasta |
20090036892 | February 5, 2009 | Karidis |
20090112207 | April 30, 2009 | Walker |
20090112263 | April 30, 2009 | Pool |
20090182380 | July 16, 2009 | Abdelgany |
20090275984 | November 5, 2009 | Kim |
20100004697 | January 7, 2010 | Fortin |
20100049204 | February 25, 2010 | Soubeiran |
20100094302 | April 15, 2010 | Pool |
20100106192 | April 29, 2010 | Barry |
20100145390 | June 10, 2010 | McCarthy |
20100217271 | August 26, 2010 | Pool |
20100280551 | November 4, 2010 | Pool |
20110029018 | February 3, 2011 | Carlos |
20110060336 | March 10, 2011 | Pool |
20110137347 | June 9, 2011 | Hunziker |
20110230883 | September 22, 2011 | Zahrly |
20110301645 | December 8, 2011 | Connor |
20120035661 | February 9, 2012 | Pool |
20120130428 | May 24, 2012 | Hunziker |
20120209269 | August 16, 2012 | Pool |
20120245636 | September 27, 2012 | Dall |
20120271353 | October 25, 2012 | Barry |
20120283781 | November 8, 2012 | Arnin |
20130150889 | June 13, 2013 | Fening |
20130268003 | October 10, 2013 | Hwang |
20130282064 | October 24, 2013 | Arnin |
20130296857 | November 7, 2013 | Barnett |
20130338713 | December 19, 2013 | Kawakami |
20140052134 | February 20, 2014 | Orisek |
20140114311 | April 24, 2014 | Pool |
20140236311 | August 21, 2014 | Vicatos |
20140250674 | September 11, 2014 | Pool |
20140257303 | September 11, 2014 | Peterson |
20140276822 | September 18, 2014 | Cresina |
20140277147 | September 18, 2014 | Alexander |
20140296918 | October 2, 2014 | Fening |
20140296919 | October 2, 2014 | Culbert |
20140303623 | October 9, 2014 | Diehl |
20140330206 | November 6, 2014 | Moore |
20140358150 | December 4, 2014 | Kaufman |
20150005824 | January 1, 2015 | Arnin |
20150105824 | April 16, 2015 | Moskowitz |
20150134002 | May 14, 2015 | Khatchadourian |
20160030088 | February 4, 2016 | Lim |
100935233 | January 2010 | KR |
2009146377 | December 2009 | WO |
2013106262 | July 2013 | WO |
Type: Grant
Filed: Oct 15, 2014
Date of Patent: Apr 3, 2018
Patent Publication Number: 20160106471
Assignee: Globus Medical, Inc. (Audubon, PA)
Inventors: Bobby Lynch (Royersford, PA), Kurt Faulhaber (Plymouth Meeting, PA)
Primary Examiner: Eduardo C Robert
Assistant Examiner: Michelle C Eckman
Application Number: 14/515,197
International Classification: A61B 17/70 (20060101);