Back pan cooling assembly for electronic display

Exemplary embodiments disclosed herein provide a back pan cooling assembly for an electronic display having a rear pan. A cooling back pan is preferably positioned behind the rear pan, the space between the cooling back pan and the rear pan defining a gap. A fan is positioned to cause a flow of ambient air through the gap. An electronic component for driving the electronic display may be placed in conductive thermal communication with the cooling back pan. A rear cover can be placed against the cooling back pan to define a sealed compartment which does not permit ambient air to enter. A port can be provided within the rear cover which allows ambient air to travel between the surroundings, the fan, and the gap.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. application Ser. No. 61/714,381 filed on Oct. 16, 2012 and is herein incorporated by reference in its entirety.

TECHNICAL FIELD

Embodiments generally relate to a cooling assembly for the back pan of an electronic display.

BACKGROUND OF THE ART

Electronic displays are now being used for a variety of applications, in addition to the traditional in-home viewing applications. It is now desirable for electronic displays to be used as restaurant menu boards, advertising, and general informational purposes. Each application may require a different set of electronic assemblies, in order to drive the electronic display and provide any ancillary services related to the electronic display and its purpose. Electronic displays are typically manufactured in standard sizes, shapes, and with standard electronic components.

SUMMARY OF THE EXEMPLARY EMBODIMENTS

One exemplary embodiment provides a cooling back pan that is positioned behind the rear pan of an electronic display, where the space between the cooling back pan and the rear pan defines a gap. A fan is preferably positioned so as to cause a flow of ambient air through the gap, cooling the rear pan and the cooling back pan. Electronic components for operating the electronic display can be mounted to the cooling back pan and preferably are placed in conductive thermal communication with the cooling back pan.

The foregoing and other features and advantages of the present invention will be apparent from the following more detailed description of the particular embodiments, as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of an exemplary embodiment will be obtained from a reading of the following detailed description and the accompanying drawings wherein identical reference characters refer to identical parts and in which:

FIG. 1 is a rear perspective view of an exemplary back pan cooling assembly.

FIG. 2 is a sectional view of the embodiment shown in FIG. 1.

DETAILED DESCRIPTION

The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

Embodiments of the invention are described herein with reference to illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.

Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.

FIG. 1 is a rear perspective view of an exemplary back pan cooling assembly where the rear cover 100 has been removed. An electronic display 15 is provided on the bottom with an exemplary cooling back pan 45 positioned on the top. The electronic display 15 contains a rear pan 22 on the rear surface of the electronic display 15 (i.e. on the side opposing an intended observer). The rear pan 22 is often a component in mass-manufactured electronic displays and typically provides mounts for electronic subassemblies or housings to go with the electronic display. In some embodiments, the rear pan 22 is metallic. As used herein, the term ‘rear pan’ does not require that the pan is actually the one that came with the originally mass-manufactured display, as this component may be upgraded from its originally mass-manufactured form by downstream manufacturers.

Here, electronic components 10 and 11 for driving the electronic display 15 are fastened to the cooling back pan 45. In an exemplary embodiment, the electronic components 10 and 11 may be placed in conductive thermal communication with the cooling back pan 22. The electronic components 10 and 11 may contain any one of the following: timing and control boards (TCON), power supplies, video cards/drivers/players, input/output interfaces, antennas, wireless receivers, modems, local electronic storage, and CPU/microprocessors.

The space between the rear pan 22 and the exemplary cooling back pan 45 defines an air gap 25. The fan 30 is positioned so as to cause a flow of ambient cooling air through the gap 25, in order to cool both the rear pan 22 and the cooling back pan 45. The fan 30 preferably draws ambient air from around the display housing, without letting the air enter other portions of the display housing, especially the portions of the cooling back pan 45 which contain the electronic components 10 and 11 (i.e. the portions sealed off between the cooling back pan 45 and the rear cover 100). In other words, the fan 30 is preferably placed in sealed gaseous communication with the surrounding ambient air and the gap 25 such that ambient air can pass through the fan 30 and gap 25 without entering the area sealed by the cooling back pan 45 and rear cover 100.

In at least one embodiment, a port 150 is provided which provides sealed gaseous communication between the ambient air surrounding the display housing and the fan 30. Once forced through the gap 25, the cooling air can exit any portion of the perimeter of the rear pan 22 and cooling back pan 45 assemblies, and eventually is exhausted out of the edges of the display housing. In other words, the gap 25 preferably extends to all four edges of the display housing and allows ambient air to enter/exit the gap 25 along all four edges of the rear pan 22 and cooling back pan 45.

FIG. 2 is a sectional view of the embodiment shown in FIG. 1.

As can be observed, the cooling back pan 45 can be used to mount any number of specialized electrical components 10 and 11 which may be required for the end-use of any electronic display. At the same time, the cooling back pan 45 can help remove heat from the electronic components 10 and 11 as well as the rear pan 22, without exposing the sensitive components to ambient air (which may contain dirt, dust, or contaminates).

It should be noted that although a single fan 30 is shown, this is not required by any embodiment as there can be multiple fans positioned on the cooling back pan 45 in other embodiments. Also, although an exemplary embodiment uses the fan 30 to push the cooling air into the gap 25, alternative embodiments could also be used to draw air from the edges of the display housing, through the gap 25, and exhaust the air through the port 150. It should also be noted that additional fans may be positioned within the cooling back pan 45 in order to circulate air around the interior of the cooling back pan 45, without mixing with the ambient air.

It should also be noted that it is preferable to place the fan 30 near the center of the cooling back pan 45, although this is not required. It may be preferable in some instances to place the fan 30 closer to the horizontal top edge of the cooling back pan 45 (as shown in FIG. 2), as the heat generated by the display assembly tends to rise where additional flow rates of cooling air would be beneficial in this area. In most cases, if using only one fan 30, it may be preferable to place the fan near the vertically-drawn centerline of the cooling back pan 45.

As used herein, the term ‘electronic display’ is any electronic assembly for generating an image to a viewer. The term specifically includes, but is not limited to: liquid crystal displays (all types), OLED, light emitting diode (LED), field emitting display (FED), light emitting polymer (LEP), organic electro luminescence (OEL), plasma displays, and any other type of thin/flat panel display. In an exemplary embodiment, the electronic display 15 comprises an LED edge lit LCD display where the LED backlight is placed in conductive thermal communication with the rear pan 22. In another exemplary embodiment, the electronic display 15 comprises an LED direct backlit LCD display where the rear pan 22 is provided as the rear surface of the direct LED backlight.

Having shown and described a preferred embodiment of the invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention and still be within the scope of the claimed invention. Additionally, many of the elements indicated above may be altered or replaced by different elements which will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims

1. A back pan cooling assembly for an electronic display having a rear pan, the assembly comprising:

a cooling back pan having a front surface and a rear surface, wherein said cooling back pan is positioned behind the rear pan;
a gap located between the cooling back pan and the rear pan;
a rear cover positioned on the cooling back pan to define a rear compartment formed between the cooling back pan and the rear cover which is substantially sealed to prevent ambient air from entering the rear compartment;
a port in the rear cover which accepts ambient air;
a fan positioned and configured to, when operated, cause a flow of ambient air to be ingested through the port and be exhausted through the gap; and
a power supply or microprocessor for driving the electronic display, the power supply or microprocessor placed at the rear surface of the cooling back pan within the sealed rear compartment and in conductive thermal communication with the cooling back pan;
wherein the fan is substantially sealed within the rear compartment such that ambient aft is not permitted to contact the power supply or microprocessor.

2. The cooling assembly of claim 1 wherein:

the electronic display is in conductive thermal communication with the rear pan.

3. The cooling assembly of claim 1 further comprising:

an LED backlight within the electronic display and placed in thermal communication with the rear pan.

4. The cooling assembly of claim 3 wherein:

the LED backlight is a direct-lit LED backlight having a front surface and a rear surface; and
the rear pan comprises the rear surface of the direct-lit LED backlight.

5. The cooling assembly of claim 1 wherein:

the rear pan and cooling back pan each contain four perimeter edges which are substantially aligned with one another.

6. The cooling assembly of claim 5 wherein:

the gap extends to all four perimeter edges of the rear pan and cooling back pan.

7. The cooling assembly of claim 5 wherein:

ambient air is permitted to exit the gap along the four perimeter edges of the rear pan and the cooling back pan.

8. A back pan cooling assembly for an electronic display having a rear pan, the assembly comprising:

a cooling back pan having a front surface and a rear surface, wherein said cooling back pan is positioned behind the rear pan;
a gap located between the cooling back pan and the rear pan;
a rear cover positioned on the cooling back pan to define a rear compartment formed between the cooling back pan and the rear cover which is sealed to prevent ambient air from entering the rear compartment;
a power supply or microprocessor for driving the electronic display, the power supply or microprocessor placed at the rear surface of the cooling back pan within the sealed rear compartment and in conductive thermal communication with the cooling back pan;
a port which accepts ambient air;
an open loop gaseous pathway defined by gaseous communication between the port and the gap; and
a fan positioned and configured to, when operated cause a flow of ambient air to flow through the open loop gaseous pathway;
wherein the fan is substantially sealed within the rear compartment such that ambient air is not permitted to contact the power supply or microprocessor.

9. The cooling assembly of claim 8 wherein:

the rear pan and the cooling back pan each contain four perimeter edges which are substantially aligned with one another.

10. The cooling assembly of claim 9 wherein:

the gap extends to all of the four perimeter edges of the rear pan and cooling back pan.

11. The cooling assembly of claim 8 wherein:

the fan is oriented such that ambient air is drawn through the port and exhausted out of the gap.

12. The cooling assembly of claim 8 wherein:

the fan is oriented such that ambient air is drawn through the gap and exhausted out of the port.

13. A back pan cooling assembly for an electronic display having a rear pan with a pair of vertical edges and a pair of horizontal edges, the assembly comprising:

a cooling back pan having a pair of vertical edges substantially aligned with the vertical edges of the rear pan and a pair of horizontal edges which are substantially aligned with the horizontal edges of the rear pan;
a gap defined between the cooling back pan and rear pan which extends to each horizontal edge to define a pair of horizontal edge gaps and to each vertical edge to define a pair of vertical edge gaps;
a fan positioned to cause ambient air to flow through the vertical edge gaps and the horizontal edge gaps;
a rear cover positioned on the cooling back pan to define a rear compartment formed between the cooling back pan and the rear cover which is sealed to prevent ambient air from entering the rear compartment;
a port within the rear cover;
an open loop gaseous pathway defined by gaseous communication between the port, fan, the horizontal edge gaps, and the vertical edge gaps; and
a power supply or microprocessor for driving the electronic display placed at the rear of the cooling back pan within the sealed rear compartment, wherein the power supply or microprocessor is in conductive thermal communication with the cooling back pan;
wherein the fan is substantially sealed within the rear compartment such that ambient air is not permitted to contact the power supply or microprocessor.

14. The cooling assembly of claim 13 wherein:

the fan is positioned near a center of the cooling back pan.

15. The cooling assembly of claim 13 further comprising:

an LED backlight within the electronic display which is placed in conductive thermal communication with the rear pan.
Referenced Cited
U.S. Patent Documents
4093355 June 6, 1978 Kaplit et al.
4593978 June 10, 1986 Mourey et al.
4634225 January 6, 1987 Haim et al.
4748765 June 7, 1988 Martin
4763993 August 16, 1988 Vogeley et al.
4921041 May 1, 1990 Akachi
4952783 August 28, 1990 Aufderheide et al.
4952925 August 28, 1990 Haastert
5029982 July 9, 1991 Nash
5088806 February 18, 1992 McCartney et al.
5247374 September 21, 1993 Terada
5282114 January 25, 1994 Stone
5293930 March 15, 1994 Pitasi
5432526 July 11, 1995 Hyatt
5535816 July 16, 1996 Ishida
5559614 September 24, 1996 Urbish et al.
5621614 April 15, 1997 O'Neill
5657641 August 19, 1997 Cunningham et al.
5748269 May 5, 1998 Harris et al.
5765743 June 16, 1998 Sakiura et al.
5767489 June 16, 1998 Ferrier
5808418 September 15, 1998 Pitman et al.
5818010 October 6, 1998 McCann
5818694 October 6, 1998 Daikoku et al.
5835179 November 10, 1998 Yamanaka
5864465 January 26, 1999 Liu
5869818 February 9, 1999 Kim
5869919 February 9, 1999 Sato et al.
5903433 May 11, 1999 Gudmundsson
5991153 November 23, 1999 Heady et al.
6003015 December 14, 1999 Kang et al.
6007205 December 28, 1999 Fujimori
6089751 July 18, 2000 Conover et al.
6104451 August 15, 2000 Matsuoka et al.
6157432 December 5, 2000 Helbing
6181070 January 30, 2001 Dunn et al.
6191839 February 20, 2001 Briley et al.
6198222 March 6, 2001 Chang
6211934 April 3, 2001 Habing et al.
6215655 April 10, 2001 Heady et al.
6351381 February 26, 2002 Bilski et al.
6392727 May 21, 2002 Larson et al.
6417900 July 9, 2002 Shin et al.
6428198 August 6, 2002 Saccomanno et al.
6437673 August 20, 2002 Nishida
6473150 October 29, 2002 Takushima et al.
6476883 November 5, 2002 Salimes
6493440 December 10, 2002 Gromatsky et al.
6504713 January 7, 2003 Pandolfi et al.
6535266 March 18, 2003 Nemeth et al.
6628355 September 30, 2003 Takahara
6683639 January 27, 2004 Scheper
6714410 March 30, 2004 Wellhofer
6727468 April 27, 2004 Nemeth
6825828 November 30, 2004 Burke et al.
6839104 January 4, 2005 Taniguchi et al.
6885412 April 26, 2005 Ohnishi et al.
6886942 May 3, 2005 Okada et al.
6891135 May 10, 2005 Pala et al.
6909486 June 21, 2005 Wang et al.
6943768 September 13, 2005 Cavanaugh et al.
6961108 November 1, 2005 Wang et al.
7015470 March 21, 2006 Faytlin et al.
7059757 June 13, 2006 Shimizu
7083285 August 1, 2006 Hsu et al.
7157838 January 2, 2007 Thielemans et al.
7161803 January 9, 2007 Heady
7190587 March 13, 2007 Kim et al.
7209349 April 24, 2007 Chien et al.
7212403 May 1, 2007 Rockenfeller
7269023 September 11, 2007 Nagano
7284874 October 23, 2007 Jeong et al.
7396145 July 8, 2008 Wang
7452121 November 18, 2008 Cho et al.
7457113 November 25, 2008 Kumhyr
7480140 January 20, 2009 Hara et al.
7535543 May 19, 2009 Dewa et al.
7602469 October 13, 2009 Shin
D608775 January 26, 2010 Leung
7667964 February 23, 2010 Kang et al.
7752858 July 13, 2010 Johnson et al.
7753567 July 13, 2010 Kang et al.
7762707 July 27, 2010 Kim
7800706 September 21, 2010 Kim
7813124 October 12, 2010 Karppanen
7903416 March 8, 2011 Chou
7995342 August 9, 2011 Nakamichi et al.
8004648 August 23, 2011 Dunn
8035968 October 11, 2011 Kwon et al.
8081465 December 20, 2011 Nishiura
8102173 January 24, 2012 Merrow
8142027 March 27, 2012 Sakai
8208115 June 26, 2012 Dunn
8223311 July 17, 2012 Kim et al.
8241573 August 14, 2012 Banerjee et al.
8248784 August 21, 2012 Nakamichi et al.
8254121 August 28, 2012 Lee
8269916 September 18, 2012 Ohkawa
8270163 September 18, 2012 Nakamichi et al.
8274622 September 25, 2012 Dunn
8274789 September 25, 2012 Nakamichi et al.
8300203 October 30, 2012 Nakamichi et al.
8320119 November 27, 2012 Isoshima et al.
8351014 January 8, 2013 Dunn
8358397 January 22, 2013 Dunn
8369083 February 5, 2013 Dunn
8373841 February 12, 2013 Dunn
8379182 February 19, 2013 Dunn
8400608 March 19, 2013 Takahashi
8472174 June 25, 2013 Idems et al.
8472191 June 25, 2013 Yamamoto et al.
8482695 July 9, 2013 Dunn
8497972 July 30, 2013 Dunn et al.
8649170 February 11, 2014 Dunn et al.
8649176 February 11, 2014 Okada et al.
8654302 February 18, 2014 Dunn
8678603 March 25, 2014 Zhang
8693185 April 8, 2014 Dunn
8700226 April 15, 2014 Schuch et al.
8711321 April 29, 2014 Dunn
8749749 June 10, 2014 Hubbard
8755021 June 17, 2014 Hubbard
8760613 June 24, 2014 Dunn
8767165 July 1, 2014 Dunn
8773633 July 8, 2014 Dunn et al.
8804091 August 12, 2014 Dunn
8823916 September 2, 2014 Hubbard
8854572 October 7, 2014 Dunn
8854595 October 7, 2014 Dunn
8879042 November 4, 2014 Dunn
8988647 March 24, 2015 Hubbard
9030641 May 12, 2015 Dunn
9089079 July 21, 2015 Dunn
9119325 August 25, 2015 Dunn et al.
9119330 August 25, 2015 Hubbard et al.
9173322 October 27, 2015 Dunn
9173325 October 27, 2015 Dunn
9282676 March 8, 2016 Diaz
9285108 March 15, 2016 Dunn et al.
9313917 April 12, 2016 Dunn et al.
9370127 June 14, 2016 Dunn
9448569 September 20, 2016 Schuch et al.
9451060 September 20, 2016 Bowers et al.
9451733 September 20, 2016 Dunn et al.
9456525 September 27, 2016 Yoon
9470924 October 18, 2016 Dunn et al.
9500896 November 22, 2016 Dunn
9516485 December 6, 2016 Bowers et al.
9549490 January 17, 2017 Hubbard
9594271 March 14, 2017 Dunn et al.
9613548 April 4, 2017 DeMars
9622392 April 11, 2017 Bowers et al.
9629287 April 18, 2017 Dunn
9648790 May 9, 2017 Dunn et al.
9655289 May 16, 2017 Dunn
9723765 August 1, 2017 DeMars
9797588 October 24, 2017 Dunn
9894800 February 13, 2018 Dunn
20010001459 May 24, 2001 Savant et al.
20010019454 September 6, 2001 Tadic-Galeb
20020033919 March 21, 2002 Sanelle et al.
20020050793 May 2, 2002 Cull et al.
20020101553 August 1, 2002 Enomoto et al.
20020126248 September 12, 2002 Yoshia
20020148600 October 17, 2002 Bosch et al.
20020149714 October 17, 2002 Anderson et al.
20020154255 October 24, 2002 Gromatzky
20020164944 November 7, 2002 Haglid
20020167637 November 14, 2002 Burke et al.
20030007109 January 9, 2003 Park
20030020884 January 30, 2003 Okada et al.
20030104210 June 5, 2003 Azumi et al.
20030128511 July 10, 2003 Nagashima et al.
20030214785 November 20, 2003 Perazzo
20040012722 January 22, 2004 Alvarez
20040035558 February 26, 2004 Todd et al.
20040036834 February 26, 2004 Ohnishi et al.
20040103570 June 3, 2004 Ruttenberg
20040105159 June 3, 2004 Saccomanno et al.
20040165139 August 26, 2004 Anderson et al.
20040223299 November 11, 2004 Ghosh
20050012039 January 20, 2005 Faytlin et al.
20050012722 January 20, 2005 Chon
20050062373 March 24, 2005 Kim et al.
20050073632 April 7, 2005 Dunn et al.
20050073639 April 7, 2005 Pan
20050134525 June 23, 2005 Tanghe et al.
20050134526 June 23, 2005 Willem et al.
20050213950 September 29, 2005 Yoshimura
20050229630 October 20, 2005 Richter et al.
20050237714 October 27, 2005 Ebermann
20050276053 December 15, 2005 Nortrup et al.
20050286131 December 29, 2005 Saxena et al.
20060012958 January 19, 2006 Tomioka et al.
20060018093 January 26, 2006 Lai et al.
20060034051 February 16, 2006 Wang et al.
20060056994 March 16, 2006 Van Lear et al.
20060082271 April 20, 2006 Lee et al.
20060092348 May 4, 2006 Park
20060125998 June 15, 2006 Dewa et al.
20060132699 June 22, 2006 Cho et al.
20060177587 August 10, 2006 Ishizuka et al.
20060199514 September 7, 2006 Kimura
20060209266 September 21, 2006 Utsunomiya
20060260790 November 23, 2006 Theno et al.
20060262079 November 23, 2006 Seong et al.
20060266499 November 30, 2006 Choi et al.
20060283579 December 21, 2006 Ghosh
20070019419 January 25, 2007 Hafuka et al.
20070030879 February 8, 2007 Hatta
20070047239 March 1, 2007 Kang et al.
20070065091 March 22, 2007 Hinata et al.
20070076431 April 5, 2007 Atarashi et al.
20070103863 May 10, 2007 Kim
20070103866 May 10, 2007 Park
20070115686 May 24, 2007 Tyberghien
20070139929 June 21, 2007 Yoo et al.
20070140671 June 21, 2007 Yoshimura
20070151274 July 5, 2007 Roche et al.
20070151664 July 5, 2007 Shin
20070171353 July 26, 2007 Hong
20070206158 September 6, 2007 Kinoshita et al.
20070211205 September 13, 2007 Shibata
20070212211 September 13, 2007 Chiyoda et al.
20070217221 September 20, 2007 Lee et al.
20070237636 October 11, 2007 Hsu
20070267174 November 22, 2007 Kim
20080055534 March 6, 2008 Kawano
20080076342 March 27, 2008 Bryant et al.
20080099193 May 1, 2008 Aksamit et al.
20080148609 June 26, 2008 Ogoreve
20080209934 September 4, 2008 Richards
20080218446 September 11, 2008 Yamanaka
20080236005 October 2, 2008 Isayev et al.
20080267790 October 30, 2008 Gaudet et al.
20080283234 November 20, 2008 Sagi et al.
20080285290 November 20, 2008 Ohashi et al.
20090009047 January 8, 2009 Yanagawa et al.
20090009729 January 8, 2009 Sakai
20090086430 April 2, 2009 Kang
20090120629 May 14, 2009 Ashe
20090122218 May 14, 2009 Oh et al.
20090126906 May 21, 2009 Dunn
20090126907 May 21, 2009 Dunn
20090126914 May 21, 2009 Dunn
20090135365 May 28, 2009 Dunn
20090147170 June 11, 2009 Oh et al.
20090154096 June 18, 2009 Iyengar et al.
20090174626 July 9, 2009 Isoshima et al.
20090244472 October 1, 2009 Dunn
20090279240 November 12, 2009 Karppanen
20090306820 December 10, 2009 Simmons et al.
20100060861 March 11, 2010 Medin
20100079949 April 1, 2010 Nakamichi
20100162747 July 1, 2010 Hamel et al.
20100171889 July 8, 2010 Pantel et al.
20100182562 July 22, 2010 Yoshida et al.
20100220249 September 2, 2010 Nakamichi et al.
20100226091 September 9, 2010 Dunn
20100232107 September 16, 2010 Dunn
20100238394 September 23, 2010 Dunn
20100321887 December 23, 2010 Kwon et al.
20110001898 January 6, 2011 Mikubo et al.
20110013114 January 20, 2011 Dunn et al.
20110019363 January 27, 2011 Vahlsing et al.
20110051071 March 3, 2011 Nakamichi
20110058326 March 10, 2011 Idems et al.
20110075361 March 31, 2011 Nakamichi et al.
20110083460 April 14, 2011 Thomas et al.
20110083824 April 14, 2011 Rogers
20110085301 April 14, 2011 Dunn
20110114384 May 19, 2011 Sakamoto et al.
20110116000 May 19, 2011 Dunn et al.
20110122162 May 26, 2011 Sato et al.
20110141724 June 16, 2011 Erion
20110261523 October 27, 2011 Dunn et al.
20120006523 January 12, 2012 Masahiro et al.
20120012295 January 19, 2012 Kakiuchi et al.
20120012300 January 19, 2012 Dunn et al.
20120014063 January 19, 2012 Weiss
20120020114 January 26, 2012 Miyamoto et al.
20120038849 February 16, 2012 Dunn et al.
20120044217 February 23, 2012 Okada et al.
20120106081 May 3, 2012 Hubbard et al.
20120188481 July 26, 2012 Kang et al.
20120206687 August 16, 2012 Dunn et al.
20120249402 October 4, 2012 Kang
20120255704 October 11, 2012 Nakamichi
20120274876 November 1, 2012 Cappaert
20120284547 November 8, 2012 Culbert et al.
20130170140 July 4, 2013 Dunn
20130176517 July 11, 2013 Kim et al.
20130201685 August 8, 2013 Messmore et al.
20130258659 October 3, 2013 Erion
20130294039 November 7, 2013 Chao
20140085564 March 27, 2014 Hendren
20140111758 April 24, 2014 Dunn et al.
20140113540 April 24, 2014 Dunn et al.
20140184980 July 3, 2014 Onoue
20140313698 October 23, 2014 Dunn et al.
20140314395 October 23, 2014 Dunn et al.
20150264826 September 17, 2015 Dunn et al.
20150319882 November 5, 2015 Dunn et al.
20150366101 December 17, 2015 Dunn et al.
20160041423 February 11, 2016 Dunn
20160044829 February 11, 2016 Dunn
20160192536 June 30, 2016 Diaz
20160195254 July 7, 2016 Dunn et al.
20160198588 July 7, 2016 DeMars
20160238876 August 18, 2016 Dunn et al.
20160242329 August 18, 2016 DeMars
20160242330 August 18, 2016 Dunn
20160249493 August 25, 2016 Dunn et al.
20160302331 October 13, 2016 Dunn
20170023823 January 26, 2017 Dunn et al.
20170068042 March 9, 2017 Dunn et al.
20170074453 March 16, 2017 Bowers et al.
20170083043 March 23, 2017 Bowers et al.
20170083062 March 23, 2017 Bowers et al.
20170111486 April 20, 2017 Bowers et al.
20170111520 April 20, 2017 Bowers et al.
20170111521 April 20, 2017 Bowers et al.
20170127579 May 4, 2017 Hubbard
20170188490 June 29, 2017 Dunn et al.
20170245400 August 24, 2017 Dunn et al.
20170257978 September 7, 2017 Diaz
Foreign Patent Documents
2011248190 May 2011 AU
2702363 May 2005 CN
1408476 April 2004 EP
1647766 April 2006 EP
1647766 April 2006 EP
1762892 March 2007 EP
1951020 July 2008 EP
2225603 September 2010 EP
2370987 October 2011 EP
2603831 June 2013 EP
2801888 November 2014 EP
2909829 August 2015 EP
3020260 May 2016 EP
3117693 January 2017 EP
2402205 December 2004 GB
2402205 December 2004 GB
402062015 March 1990 JP
402307080 December 1990 JP
03153212 July 1991 JP
3153212 July 1991 JP
6082745 March 1994 JP
8115788 May 1996 JP
08194437 July 1996 JP
8194437 July 1996 JP
8339034 December 1996 JP
H09246766 September 1997 JP
11160727 June 1999 JP
11160727 June 1999 JP
11296094 October 1999 JP
H11296094 October 1999 JP
2001209126 August 2001 JP
2002158475 May 2002 JP
2002158475 May 2002 JP
2004053749 February 2004 JP
2005017556 January 2005 JP
2000131682 May 2005 JP
2005134849 May 2005 JP
2005134849 May 2005 JP
2005265922 September 2005 JP
2006513577 April 2006 JP
2007322718 May 2006 JP
2006148047 June 2006 JP
2006163217 June 2006 JP
2007003638 January 2007 JP
09307257 November 2007 JP
09307257 November 2007 JP
2008010361 January 2008 JP
2008292743 December 2008 JP
2008292743 December 2008 JP
2010024624 February 2010 JP
2010024624 February 2010 JP
200366674 November 2004 KR
20050033986 April 2005 KR
20050033986 April 2005 KR
200401354 November 2005 KR
20060016469 February 2006 KR
20060016469 February 2006 KR
100666961 January 2007 KR
100666961 January 2007 KR
1020070070675 April 2007 KR
1020070070675 July 2007 KR
1020070048294 August 2007 KR
101764381 July 2017 KR
2513043 April 2014 RU
WO2005079129 August 2005 WO
WO2005079129 August 2005 WO
WO2008050660 May 2008 WO
WO2009065125 May 2009 WO
WO2009065125 May 2009 WO
WO2009135308 November 2009 WO
WO2010007821 February 2010 WO
WO2010080624 July 2010 WO
WO2011069084 June 2011 WO
WO2011072217 June 2011 WO
WO2011140179 November 2011 WO
WO2011150078 December 2011 WO
WO2012021573 February 2012 WO
WO2012024426 February 2012 WO
2013182733 December 2013 WO
WO2014149773 September 2014 WO
WO2014150036 September 2014 WO
WO2015168375 November 2015 WO
WO2016102982 June 2016 WO
WO2016133852 August 2016 WO
WO2017152166 September 2017 WO
Other references
  • Zeef, Hubing, EMC analysis of 18′ LCD Monitor, Aug. 2000, 1 page.
  • Wankhede, Evaluation of Cooling Solutions for Outdoor Electronics, Sep. 17-19, 2007, 6 pages.
  • Bureau of Ships Navy Department, Guide Manual of Cooling methods for Electronic Equipment, Mar. 31, 1955, 212 pages.
  • Scott, Cooling of Electronic Equipment, Apr. 4, 1947, 119 pages.
  • Sergent, Thermal Management Handbook for Electronic Assemblies, Aug. 14, 1998, 190 pages.
  • Steinberg, Cooling Techniques for Electronic Equipment First Edition, 1980, 255 pages.
  • Steinberg, Cooling Techniques for Electronic Equipment Second Edition, 1991, 299 pages.
  • Yeh, Thermal Management of Microelectronic Equipment, Oct. 15, 2002, 148 pages.
  • Itsenclosures, Product Catalog, 2009, 48 pages.
  • Itsenclosures, Standard Product Data Sheet, 2011, 18 pages.
  • Sunbritetv, All Weather Outdoor LCD Television Model 4610HD, 2008, 1 page.
  • Sunbritetv, Introduces Two New All-Weather Outdoor Televisions InfoComm 2008, 7 pages.
  • Itsenclosures, Viewstation, 2017, 16 pages.
  • Novitsky, Driving LEDs versus CCFLs for LCD backlighting, Nov. 12, 2007, 6 pages.
  • Federman, Cooling Flat Panel Displays, 2011, 4 pages.
  • Zeeff, T.M., EMC analysis of an 18″ LCD monitor, 2000, 1 page.
Patent History
Patent number: 10660245
Type: Grant
Filed: Oct 16, 2013
Date of Patent: May 19, 2020
Patent Publication Number: 20140113540
Assignee: MANUFACTURING RESOURCES INTERNATIONAL, INC. (Alpharetta, GA)
Inventors: William Dunn (Alpharetta, GA), Mike Brown (Alpharetta, GA), Tim Hubbard (Alpharetta, GA)
Primary Examiner: Grant Moubry
Assistant Examiner: Ryan L Faulkner
Application Number: 14/055,499
Classifications
Current U.S. Class: Display Peripheral Interface Input Device (345/156)
International Classification: H05K 7/20 (20060101);