Patents by Inventor Emilie J. Siochi

Emilie J. Siochi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240376278
    Abstract: Epoxy resin formulations and processes for producing composites via low temperature, isothermal infusion, the composites exhibiting performance characteristics suitable for aerospace materials and applications thereof, the formulations comprising: Type-1 anionic formulations; Type-2 anionic formulations; Type-2 anionic formulations with toughener; and cationic formulations. The composites include an epoxy resin formulation and one or more composite fiber materials, the composites formed via an isothermal infusion and cure process in which infusion and cure temperatures of the epoxy resin are about the same, are less than about 100° C., and cure time is less than about one hour. The composites have a glass transition temperature (Tg)?150° C. and a storage modulus ?3 GPa.
    Type: Application
    Filed: May 2, 2024
    Publication date: November 14, 2024
    Inventors: Joseph G. Smith, JR., Scott R. Zavada, Elizabeth Moore, John M. Gardner, Godfrey Sauti, Benjamin D. Jensen, Keith L. Gordon, Emilie J. Siochi
  • Patent number: 11760738
    Abstract: Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: September 19, 2023
    Assignee: United States of America as represented by the Adminstrator of NASA
    Inventors: Christopher J. Wohl, Jr., John W. Connell, Emilie J. Siochi, Joseph G. Smith, Jr.
  • Patent number: 11298526
    Abstract: A device for promoting healing of an injury in a living being is provided. Such device is based upon an injury covering portion, which portion comprises an electroactive polymer, such as poled polyvinylidine difluoride (PVDF) or a copolymer of PVDF. The electroactive polymer has either pyroelectric properties, piezoelectric properties, or both.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: April 12, 2022
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Lisa S. Carnell, Emilie J. Siochi, Kam W. Leong
  • Publication number: 20220017479
    Abstract: Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 20, 2022
    Inventors: Christopher J. Wohl, JR., John W. Connell, Emilie J. Siochi, Joseph G. Smith, JR.
  • Patent number: 11130742
    Abstract: Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: September 28, 2021
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Christopher J. Wohl, Jr., John W. Connell, Emilie J. Siochi, Joseph G. Smith, Jr.
  • Patent number: 11097499
    Abstract: A method allows for preparation of CNT nanocomposites having improved mechanical, electrical and thermal properties. Structured carbon nanotube forms such as sheet, yarn, and tape are modified with ?-conjugated conductive polymers, including polyaniline (PANT), fabricated by in-situ polymerization. The PANI modified CNT nanocomposites are subsequently post-processed to improve mechanical properties by hot press and carbonization.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: August 24, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Jae-Woo Kim, Emilie J. Siochi, Kristopher E. Wise, John W. Connell, Yi Lin, Russell A. Wincheski, Dennis C. Working
  • Patent number: 11097440
    Abstract: A cutting mechanism includes electrodes that are utilized to cut or score a non-conductive outer material of a filament or sheet. The electrodes contact a conductive reinforcing material of the filament or sheet to complete an electric circuit. Electric current flows through and heats the conductive material to oxidize or otherwise separate/cut the conductive material and any remaining non-conductive material.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: August 24, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Godfrey Sauti, Jae-Woo Kim, Emilie J. Siochi, John M. Gardner
  • Patent number: 11001684
    Abstract: One aspect of the present invention is a puncture healing polymer blend comprising a self-healing first polymer material having sufficient melt elasticity to snap back and close a hole formed by a projectile passing through the material at a velocity sufficient to produce a local melt state in the first polymer material. The puncture healing polymer blend further includes a non-self-healing second material that is blended with the first polymer material. The blend of self-healing first polymer material and second material is capable of self-healing, and may have improved material properties relative to known self-healing polymers.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: May 11, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi, Dennis C. Working, Russell W. Smith
  • Patent number: 10894353
    Abstract: A method of fabricating (printing) parts utilizing flexible filaments includes anchoring a portion of a flexible filament to a substrate. A length of flexible filament is extended over the substrate while the flexible filament is in tension to thereby avoid buckling of the flexible filament. The flexible filament may comprise a thermoplastic material and fibers or other reinforcing materials whereby composite 3D parts can be fabricated.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: January 19, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: John M. Gardner, Christopher J. Stelter, Katherine A. Fotion, Jae-Woo Kim, Godfrey Sauti, Emilie J. Siochi
  • Patent number: 10745509
    Abstract: Methods are provided to produce new mechanoresponsive healing systems. Additionally, various embodiments provide a two tier self-healing material system concept that provides a non-intrusive method to mitigate impact damage in a structure ranging from low velocity impact damage (e.g., crack damage) to high velocity impact damage (e.g., ballistic damage.) The various embodiments provide the mechanophore linked polymer PBG-BCB-PBG. The various embodiments provide methods for synthesizing PBG-BCB-PBG.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: August 18, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi
  • Publication number: 20200247770
    Abstract: Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: Christopher J. Wohl, JR., John W. Connell, Emilie J. Siochi, Joseph G. Smith, JR.
  • Patent number: 10626098
    Abstract: Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: April 21, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Christopher J. Wohl, Jr., John W. Connell, Emilie J. Siochi, Joseph G. Smith, Jr.
  • Publication number: 20200070445
    Abstract: A method allows for preparation of CNT nanocomposites having improved mechanical, electrical and thermal properties. Structured carbon nanotube forms such as sheet, yarn, and tape are modified with ?-conjugated conductive polymers, including polyaniline (PANT), fabricated by in-situ polymerization. The PANI modified CNT nanocomposites are subsequently post-processed to improve mechanical properties by hot press and carbonization.
    Type: Application
    Filed: November 4, 2019
    Publication date: March 5, 2020
    Inventors: Jae-Woo Kim, Emilie J. Siochi, Kristopher E. Wise, John W. Connell, Yi Lin, Russell A. Wincheski, Dennis C. Working
  • Patent number: 10533270
    Abstract: Consolidated carbon nanotube or graphene yarns and woven sheets are consolidated through the formation of a carbon hinder formed from the dehydration of sucrose. The resulting materials, on a macro-scale are lightweight and of a high specific modulus and/or strength. Sucrose is relatively inexpensive and readily available, and the process is therefore cost-effective.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: January 14, 2020
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Godfrey Sauti, Jae-Woo Kim, Emilie J. Siochi, Kristopher E. Wise
  • Publication number: 20190388677
    Abstract: A device for promoting healing of an injury in a living being is provided. Such device is based upon an injury covering portion, which portion comprises an electroactive polymer, such as poled polyvinylidine difluoride (PVDF) or a copolymer of PVDF. The electroactive polymer has either pyroelectric properties, piezoelectric properties, or both.
    Type: Application
    Filed: September 9, 2019
    Publication date: December 26, 2019
    Inventors: Lisa S. Carnell, Emilie J. Siochi, Kam W. Leong
  • Patent number: 10513080
    Abstract: A method of fabricating composite articles includes supplying electrical current to an electrically conductive filament. The electrically conductive filament may include a first material that is electrically conductive and a polymer second material. The polymer second material comprises at least one of a thermoplastic polymer and a partially cured thermosetting polymer. The heated filament is deposited according to a predefined pattern in successive layers to adhere the polymer material of the layers together and build up a three dimensional article. The article includes strands of the first material embedded in a substantially continuous polymer matrix of the second material.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: December 24, 2019
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Jae-Woo Kim, Godfrey Sauti, John M. Gardner, Emilie J. Siochi
  • Patent number: 10500836
    Abstract: A method of controlling an additive fabrication process includes providing a primary substrate and a test substrate. Polymer test material is extruded onto the test substrate utilizing an extrusion head. The extrusion head is moved relative to the test substrate, and a force required to move the extrusion head relative to the test substrate is measured to thereby generate test data. A part is fabricated by extruding polymer material onto the primary substrate utilizing the extrusion head. The test data is utilized to control at least one process parameter associated with extruding polymer material onto the primary substrate.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: December 10, 2019
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Godfrey Sauti, Jae-Woo Kim, Emilie J. Siochi, John M. Gardner, Christopher J. Stelter
  • Patent number: 10464271
    Abstract: A method allows for preparation of CNT nanocomposites having improved mechanical, electrical and thermal properties. Structured carbon nanotube forms such as sheet, yarn, and tape are modified with ?-conjugated conductive polymers, including polyaniline (PANI), fabricated by in-situ polymerization. The PANI modified CNT nanocomposites are subsequently post-processed to improve mechanical properties by hot press and carbonization.
    Type: Grant
    Filed: August 24, 2013
    Date of Patent: November 5, 2019
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Jae-Woo Kim, Emilie J. Siochi, Kristopher E. Wise, John W. Connell, Yi Lin, Russell A. Wincheski, Dennis C. Working
  • Patent number: 10450432
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: October 22, 2019
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Patent number: 10406346
    Abstract: A method and device for promoting healing of an injury in a living being are provided. Such method and device are based upon an injury covering portion, which portion comprises an electroactive polymer, such as poled polyvinylidine difluoride (PVDF) or a copolymer of PVDF. The electroactive polymer has either pyroelectric properties, piezoelectric properties, or both.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: September 10, 2019
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Lisa A. Scott-Carnell, Emilie J. Siochi, Kam W. Leong